Documenting weather changes

Children's feet with sneakers and rain bootsAs the wind stirs up and we get a full day of long-awaited rain, children arrive at school in rain boots and coats, and a few in soaking wet sandals. Hurricane Joaquin will bring more rain and wind this weekend as it moves north in the Atlantic, hopefully off the coast not inland.

Taking young children outside to observe the short-term conditions of the atmosphere—weather—is a foundation for later learning about the average daily weather for an extended period of time at that location—climate—as defined by the National Ocean Service of the National Oceanic and Atmospheric Administration.

Visit the National Weather Service’s JetStream: Online School for Weather page and scroll down to see the Köppen climates map. The continental USA has ranges in normal temperatures and amounts of precipitation, so no single lesson plan on weather observations Cover of the October 2015 Science and Childrenwill be a good fit for all. Teaching about your local weather will provide the most opportunities for direct observation that can deepen children’s understanding about weather.

In the October 2015 issue of Science and Children I wrote about children counting and graphing the number of short sleeve shirts, sweaters and jackets that classmates wore to school each day. The clothing is a symbol for the weather, and observing changing trends in outerwear is a focused way to track changes in the immense phenomena that is weather.


Posted in Early Years | Tagged , , , | Leave a comment

NSTA’s K-12 October 2015 Science Education Journals Online

NSTA’s K-12 October 2015 Science Education Journals Online

Looking for ways to talk about climate change with your students? Are your students curious about the nature of science? Want to know how to create interdisciplinary lessons connected to real-world applications? The October K–12 journals from the National Science Teachers Association (NSTA) have the answers you need. Written by science teachers for science teachers, these peer-reviewed journals are targeted to your teaching level and are packed with lesson plans, expert advice, and ideas for using whatever time/space you have available. Browse the October issues; they are online (see below), in members’ mailboxes, and ready to inspire teachers!

Science and Childrensc_oct15_cov

Our rapidly changing climate increases the need for even our youngest students to have a strong background in this area of science. This issue of S&C will help you teach your students about Earth’s systems, with a particular focus on climate.

Featured articles (please note, only those marked “free” are available to nonmembers without a fee):

Science Scopess_oct15_cov

Although middle level science classes often seem self-contained to students, scientific disciplines—and the scientific field at large—do not exist in isolation. The articles in this issue of Science Scope will show you how to collaborate with other science and content-area teachers to create interdisciplinary lessons connected to real-world applications.

The Science Teachertst_oct15_cov

Learning about the nature of science (NOS) is certainly as important as learning about scientific laws and theories. In this increasingly scientific and technological age, personal and societal decisions require a clear understanding of scientific knowledge and how it is generated. NOS tenets need to be intentionally targeted in classroom activities and laboratory investigations and incorporated into all our science teaching. Using case studies from the history of science can help develop students’ understanding of the nature of science and the diverse individuals practicing science and engineering today, as articles featured in this issue illustrate.

Featured articles (please note, only those marked “free” are available to nonmembers without a fee):

Get these journals in your mailbox as well as your inbox—become an NSTA member!

The mission of NSTA is to promote excellence and innovation in science teaching and learning for all.

Follow NSTA

Facebook icon Twitter icon LinkedIn icon Pinterest icon G+ icon YouTube icon Instagram icon
Posted in NSTA Membership | Tagged , , , , , , | Leave a comment

Build Your Professional Network

In this video, columnist Ben Smith shares information from the Science 2.0 column, “Build Your Professional Network,” that appeared in a recent issue of The Science Teacher. Read the article here: Build Your Professional Network

YouTube Preview Image
Posted in Science 2.0 | Leave a comment

Successful STEM Reform: Leadership Is Key

text-based header

A recent Education Week blog post entitled “STEM Reforms in Needy Schools Eroded Quickly” painted a disappointing picture of STEM education reform. In this post, part 1 of a 2-part series* from the National Science Teachers Association (NSTA), Dr. Cary Sneider (Associate Research Professor at Portland State University in Portland, Oregon) responds.

Schools have a great deal of momentum. They are very difficult to change—especially if just one part of the system is changed without taking into account interactions with other parts of the system. Approving systemic changes to accommodate STEM reform takes political will and therefore support from top educational leaders. Although I don’t know the details of these particular schools, support from top leaders may be a common thread for the problems identified in the report. For example:

Schedule conflicts: The report mentioned scheduling nightmares when guidance counselors tried to fit new STEM courses into existing core requirements. It seems obvious that it would not be possible to incorporate new STEM courses without appropriate modifications to core requirements. The root cause of such a conflict must lie with the people who make policy decisions. If they support STEM reform then they will change the rules to allow it; if they don’t they will block the necessary changes.

State accountability tests: We set an impossible goal when we ask teachers to implement new teaching methods with new goals, and hold them accountable for their students to perform at a high level on the old assessments. New performance-based assessments, consistent with new STEM standards have not yet been developed in any state, and until they are educational leaders should not use inappropriate measures to judge teachers and students.

Personnel changes: The report mentions that courses like physiology and robotics were advertised to students and never actually offered. There could be many reasons why such problems occur (or in this case didn’t occur,) but whatever the reason, teachers were not in a position to offer those courses. Since the deployment of staff to teach various courses is a function of administration, it is likely that these courses did not have sufficient support from the top.

Successful STEM reform addresses these issues from the start. Sneider will be discussing the systemic approach required for educational change on November 7 in the NSTA Virtual Conference Shifting to Integrated STEM: Experiences of Three School Districts. Sneider explains that changing educational systems requires a willingness to examine—and if necessary change—existing policies. He and his co-presenters will give several examples in which systemic changes have brought about significant improvements in STEM teaching and learning. They will also discuss what it takes to implement such changes, including the absolute requirement of support by top leaders. Learn more and register. Register early by Friday, October 9, and save $10 off your registration fee: Use promo code NOV_SAVE10.

Dr. Cary SneiderDr. Cary Sneider is Associate Research Professor at Portland State University in Portland, Oregon, where he teaches courses in research methodology in a Master of Science Teaching degree program.

Read Part 2 of this series: 3 Key Ingredients for Successful STEM Implementation: Trust, Collaboration, and Innovative Thinking

The mission of NSTA is to promote excellence and innovation in science teaching and learning for all.

Follow NSTA

Facebook icon Twitter icon LinkedIn icon Pinterest icon G+ icon YouTube icon Instagram icon


Posted in The Learning Center | Tagged , , | Leave a comment

The PASCO Bluetooth Spectrometer: Even Isaac Newton would flip over the power of this digital prism!

Pasco Wireless Spectrometer

The PASCO Wireless Spectrometer

Simply put, constructivism is a theory of knowledge that argues that humans generate knowledge and meaning from an interaction between their experiences and their ideas. So it follows that nothing is can be more constructivist than exploring the theoretical with real-time tools that measure the invisible. And the PASCO Wireless Spectrometer is just such a tool.
YouTube Preview Image
One of the most amazing things about the PASCO Wireless Spectrometer is that it does exactly what you would want it to do; show you the invisible with ease, simplicity, and leave behind a useful digital paper trail of graphs and charts. Although the main purpose of the PASCO Wireless Spectrometer was “specifically designed for introductory spectroscopy experiments” it actually goes farther than that. Much farther. Much much farther!
Chinese Teachers

This trio of teachers, two from China and one from Mongolia have limited English speaking skills, but instantly understood the iPad app and PASCO Wireless Spectrometer. Seems that light is also a universal language.

The physics and electronics behind the PASCO Wireless Spectrometer are straight forward. The output is clear and obvious. And the mobility aspect is unprecedented. In other words, it does what it should how it should. Amazing enough on its own, but in true paradigm shifting fashion the PASCO Wireless Spectrometer presents the invisible world of visible light in the magical cartoon chart we’ve seen only in static textbooks for most of our lives. It’s as if the dinosaur skeletons in dusty museums suddenly came alive and reacted to the world.
YouTube Preview Image
Visible light, or the light our human eyes sense and convert to electrical impulses to our brains, only encompass a tiny fraction of the electromagnetic spectrum. Wavelengths between 390-700 nanometers, or from the short blue/violet waves to the longer orange/red ones with green and yellow in the middle. Infrared waves are just a little too long for us to see, and ultraviolet ones are a little too short. Even longer are radio waves, and even shorter are x-rays. The PASCO Wireless Spectrometer has a range of 380 to 950 nanometers meaning it can “see” a little into the ultraviolet and a lot into the infrared.

Continue reading …

Posted in NSTA Recommends: Technology, Science 2.0 | Tagged , | Leave a comment

The “E” in STEM

S.T.E.M.Teaching a “STEM” class or curriculum means addressing each letter in the acronym. In a rigorous STEM curriculum, those four areas of teaching and student learning—Science, Technology, Engineering and Mathematics—will be observable every day.


The technology piece may be the easiest to incorporate because the technologies for writing and drawing have been staples in teaching young children for a long time. Children document their observations and thinking with their drawings and writing. Some programs fully integrate newer technologies such as cameras, computers, and easily portable devices for recording and documenting. “Technology and Interactive Media as Tools in Early Childhood Programs Serving Children from Birth through Age 8,” is a joint position statement issued by the National Association for the Education of Young Children (NAEYC) and the Fred Rogers Center for Early Learning and Children’s Media at Saint Vincent College.


Early Childhood Mathematics: Promoting Good Beginnings, the 2010 joint position statement of the National Association for the Education of Young Children (NAEYC) and the National Council of Teachers of Mathematics (NCTM), describes high quality mathematics education.


The National Science Teachers Association’s (NSTA) position statement on Early Childhood Science Education was endorsed by NAEYC in 2014. The principals and declarations clarify how to teach science concepts and topics.


Early childhood teachers need professional development to prepare to teach engineering concepts. The American Society for Engineering Education describes professional development that addresses the fundamental nature, content and practices of engineering.

Guides such as STEM Sprouts Teaching Guide by the Boston Children’s Museum and the MA Board of Education’s Guidelines for Preschool Learning Experiences provide direction for intentionally including engineering teaching.

Cover of the September 2015 Science and Children journalLearn how preschool teachers in Hartford, Connecticut implemented a unit on the topic of Building Structures (Chalufour and Worth 2004) in mixed-age classrooms of three-, four-, and five-year-old students, in “Gimme an E! Seven strategies for supporting the “E” in young children’s STEM learning” by Cynthia Hoisington and Jeff Winokur. This article in the September 2015 Science and Children describes how instructors and coaches in the professional development program Cultivating Young Scientists facilitated teachers’ preparation of the environment by planning space, materials, and time for building explorations. Hoisington and Winokur emphasize that preschool teachers need opportunities to participate in and reflect on their own collaborative building explorations. So grab a set of blocks, try building a tower and then reflect on how to build a better tower. Write some productive prompts to use when children build structures, to invite them to raise questions, and identify, address, and solve building challenges.

Posted in Early Years | Tagged , , , | Leave a comment

Mentoring a colleague

My principal asked me as the science department chair if I could help one of our new teachers. From the beginning, she’s having issues with classroom management and organization. I’m willing to do what I can to help her, and she is open to this help. Do you have any suggestions on what I can do? —L., Rhode Island

If your school does not have a formal mentoring program, it seems like you can create your own plan. As a mentor you can be a role model, a good listener, a provider of feedback, a source of suggestions and resources, a shoulder to lean on, and someone with whom to bounce around ideas. As a colleague, you’ll want to be helpful but not judgmental or evaluative.

Even successful student teachers can get a rude awakening in their first year on their own, when they are responsible for their classes from the beginning. They don’t have the advantage of stepping into an established situation, in terms of setting up a classroom, lab equipment inventories, safety procedures, and routines. She may be trying to learn new content, and if she has more than one subject to prepare for, it can be overwhelming.

You could start with an informal conversation. “I understand that you have some challenges with classroom management. This happens to everyone. I had some real difficulties, too.” She may not realize that even experienced teachers face new situations every year, so it may help to share some of your own current challenges and how you’re working on them.

If possible, it would be good if you could observe this teacher—informally, of course. In addition to watching the teacher, consider what the students are (or are not) doing and how the classroom is set up. You could ask questions as discussion starters: What worked well for you when you were student teaching? What are your greatest challenges? What do you think about…? Did you notice today when…? Have you ever considered…? Her responses and your observations could be the start of an action plan.

In addition to your suggestions, social media would also be a good way for her to get new ideas.

Continue reading …

Posted in Ms. Mentor | Tagged , | Leave a comment

#NSTA15 Area Conferences on Science Education: Bloggers Wanted

text based image calling for bloggers

Planning to attend one of the National Science Teachers Association (NSTA) area conferences on science education this fall? If so, consider writing or making a video about your experience. What do you get out of it? Our gratitude, admiration from your peers, and an #NSTA15 conference tweetshirt!*

The votes have been tallied and the winning tweetshirt is:Stemstar shirt

We love to see the conferences through the eyes of attendees. Below are a few of our favorites from earlier conferences. Read them to get a sense of what’s in store for you if you attend, and get inspired to blog/vlog yourself!

The mission of NSTA is to promote excellence and innovation in science teaching and learning for all.

NSTA Conferences on Science Education

2015 Area Conferences

2015 Fall NGSS Workshops

2015 Virtual Conference

2016 National Conference

2016 STEM Forum & Expo

Follow NSTA

Facebook icon Twitter icon LinkedIn icon Pinterest icon G+ icon YouTube icon Instagram icon




*While supplies last, shirts will be given to bloggers ONSITE ONLY at our 2015 area conferences on science education. Bloggers: Tweet your blog/vlog title and link, tag it #NSTA15, and then come to the #askNSTA booth in the Exhibit Hall in the convention center to claim your shirt.

Posted in Conferences | Tagged , | Leave a comment

House Speaker Boehner Resigns, What Now for No Child Left Behind?

Text-based imaging saying: "With the Republican party in flux, the pundits are debating what will become of the reauthorization of No Child Left Behind in the aftermath of Boehner’s resignation"

On Friday, September 25, House of Representatives Speaker John Boehner resigned from Congress effective at the end of October.

This action caught everyone by surprise. With the Republican party in flux, the pundits are debating what will become of the reauthorization of No Child Left Behind in the aftermath of Boehner’s resignation (read more here), with many calling the ESEA rewrite “toast.” It will be harder for Rep. Kline, who is also retiring at the end of 2016, to get the support necessary to get a conferenced bill acceptable to the White House thru the House of Representatives.

Boehner, one of the original four architects of the original No Child Left Behind legislation (Rep. Boehner, former Rep. George Miller, D-Calif., late Sen. Ted Kennedy, D-Mass., and former Sen. Judd Gregg, R-N.H.) supported the House ESEA bill, the Student Success Act (HR 5), and is a proponent of voucher programs.

Expect much more in the weeks ahead as lawmakers debate the end of the fiscal year (and a possible government shutdown) as this story continues to develop.

NSTA and NCTM Call on Congress

The National Council of Mathematics and NSTA sent a letter to House and Senate appropriations leaders last week, calling on them to accept the Senate funding level of $141,299,000 for the Department of Education Title II B program as they negotiate FY 2016 funding for federal education programs (read the letter here).

The funding for this program, and other federal education programs, will be at stake in the next few weeks as Congressional leaders finalize a FY16 budget; strategies include shutting down the federal government on Oct. 1 if they cannot come to an agreement on a budget bill for the fiscal year. Read more.

Jodi Peterson is Assistant Executive Director of Legislative Affairs for the National Science Teachers Association (NSTA) and Chair of the STEM Education Coalition. e-mail Jodi at; follow her on Twitter at @stemedadvocate.

The mission of NSTA is to promote excellence and innovation in science teaching and learning for all.

Follow NSTA

Facebook icon Twitter icon LinkedIn icon Pinterest icon G+ icon YouTube icon Instagram icon



Posted in Legislative Update | Tagged , , , | Leave a comment

Teaching Science at a Museum Magnet School

Fifth graders from Ortega Elementary Museum Studies Magnet School in Jacksonville, Florida, use a hands-on wet lab at the Marine Science Education Center in Atlantic Beach, Florida, one of Ortega’s seven museum partners.   Photo credit: ANN MCGLAUFLIN

Fifth graders from Ortega Elementary Museum Studies Magnet School in Jacksonville, Florida, use a hands-on wet lab at the Marine Science Education Center in Atlantic Beach, Florida, one of Ortega’s seven museum partners. Photo credit: ANN MCGLAUFLIN

Museums and school districts around the country have partnered to create museum magnet schools, which combine formal and informal learning. These schools offer some advantages for science classes. “Partner[ing] with The Discovery Museum and Planetarium lends itself to many opportunities exclusive to a ‘space’ museum,” says Janine Walsh, seventh- and eighth-grade science teacher at Interdistrict Discovery Magnet School (IDMS) in Bridgeport, Connecticut. The museum “has exposed my primarily urban students to events that they would not experience[in] their neighborhood schools,…[including] teleconferencing with NASA scientists from Operation Ice Bridge, a polar ice cap survey mission, [and] live viewing of the Orion Spacecraft.”

“Museum staff [co-teach] at the school, [and] our student coaches and interns [work] with younger children at the museum,” says Claire Gold, IDMS founder. She also notes that “most elementary teachers are weak in science and need expert, knowledgeable support” that museums can provide.

“A lot of people have a misconception about the word ‘museum;’ they associate it with having no interaction with the exhibits, just looking,” says Josh Hunter, seventh-grade science teacher at Moore Square Magnet Middle School in Raleigh, North Carolina. “Our idea is it’s all about interaction. [For example,] our students do experiments with scientists at the North Carolina Museum of Natural Sciences.”

“We’re able to take students to…an active research museum, and [they] see how the science they learn…is useful in the real world,” says Krista Adair, sixth grade science teacher at Moore. “We scaffold so at the beginning of the year, they do little experiments and some data tracking. Then they can see how it works in the museum setting, [which has] a lot more resources and equipment.”

Last year, “we took all 500 [Moore] students to the museum” for an event featuring “scientists with many different research areas and talents,” says Julianna Martinez, seventh-grade science teacher. “We [also] had an opportunity for young scientists to come to our school and present their work.” At these events, students heard from scientists who have succeeded despite having disabilities. “These kinds of experiences really touch the students,” she observes.

Museum magnet teachers cite the benefits of assessing students’ knowledge through the exhibits they create about what they learned. “Our students create exhibits that are more than just a bulletin board item. They try to make them museum-quality,” says Ann McGlauflin, fifth-grade science teacher at Ortega Elementary Museum Studies Magnet School in Jacksonville, Florida. Students’ exhibits “integrate more than just the topic” and can include “language arts, art, and music,” and “more critical-thinking skills [are involved], such as communication and language skills,” she contends.

For the science fair last year, her students created a large “wall quilt,” with each block illustrating a student’s project. “The artistic representation made them think at a different [and more creative] level,” she observes.

McGlauflin’s students scored two percentage points higher on state tests last year. “I knew it wasn’t a fluke; what we’re doing seems to be working,” she asserts.

“The magnet museum format has helped students understand the importance of reading and writing in English class as well as in science class,” says Raji Menon, grades 6–8 science teacher at New York City’s Museum Magnet School. After researching their topics and writing reports, four of her students presented their projects at the American Museum of Natural History last June.

“My students felt so proud. They were talking about their projects like experts—taking ownership of their own understanding,” says Menon. The museum gave them the opportunity “to explain their work to other people besides their teachers and classmates.”

Support for Teachers

Seven area museums work with teachers from Normal Park Museum Magnet School in Chattanooga, Tennessee. “We meet with museum partners two or three times a year [to] talk about what studies are coming up. They give us ideas, and we collaborate,” says Kara Semtner, sixth-grade science teacher.

Erin Woodrow, seventh-grade science teacher at Normal Park, worked with an art teacher on a unit that engaged students in “looking at how an artist conveys force and motion” in an exhibit at Chattanooga’s Hunter Museum of American Art. “Though the museum’s paintings and sculptures are stationary, they convey motion,” she maintains.

When Trey Joyner taught science at Normal Park, he was able to take “a backstage tour of the exhibits” at the Tennessee Aquarium. “The aquarium was breeding new species of jellyfish… The jellyfish exhibit fit right into our content,” he notes.

The aquarium offers courses for county teachers. “It’s like an open door. I can go and learn as much as I want to, anytime,” Joyner relates. In addition, museums “have access to the most current research,” he points out.

Maintaining Partnerships

As in any relationship, these partnerships face some issues. “[Our] partnership is still relatively young,” says IDMS’s Walsh. “Hampered by [the museum’s] leadership changes and staffing gaps, we have not had the ability to experience the full potential of this partnership.”

When grant funds ran out, “we bought less programs [from the museum],” says Mary Servino, IDMS science specialist. The museum also started charging fees for services that had been free. “We’re hoping [there will be] sufficient funding for the school and the museum to rebuild the relationship… We’re very positive it will happen,” she observes, noting that communication has improved since the museum’s new education director has attended school governance council meetings.

When it lost Title I funds in 2005, Normal Park created an Education Fund and hired a part-time executive director to raise money. “We’re paying $25,000 a year to raise $250,000 a year,” Principal Jill Levine explains.

Nevertheless, the teachers encourage colleagues at traditional schools to reach out to their local museums. “There’s a lot you can duplicate on a smaller scale,” with free resources from museums, says Woodrow. “Allow yourself to look at new ways to teach through an art or museum perspective. It helps teachers stay excited about what they’re doing, and will help kids stay excited about what they’re learning.”

This article originally appeared in the September 2015 issue of NSTA Reports, the member newspaper of the National Science Teachers Association. Each month, NSTA members receive NSTA Reports featuring news on science education, the association, and more. Not a member? Learn how NSTA can help you become the best science teacher you can be.

The mission of NSTA is to promote excellence and innovation in science teaching and learning for all.

Follow NSTA

Facebook icon Twitter icon LinkedIn icon Pinterest icon G+ icon YouTube icon Instagram icon
Posted in NSTA Reports | Leave a comment