Manipulating Contents & Containers, and representing 3-D objects in block play

It is so fascinating how obvious it is that children have different prior experiences, different developmental ages, and different interests when we teachers present them with a set of materials and don’t ask them to use them in a particular way! This post is a reflection on how two different sets of objects are used by preschool children ages 3-5 years. The experiences I describe are just the beginning of explorations into the relationship between “contents” and “containers,” and the way 2-D materials can represent 3-D structures.

Contents and containers

Child collecting ball "contents" into a net "container."I had the pleasure of working with two classrooms on building with a variety of materials, a class of young-to-old three-year-olds and a mixed age classroom of just-four-year-olds to older five-year-olds. We teachers provided a set of “contents and containers” to both classes, inspired by presentations by Dr. Rosemary Geiken and Dr. Jill Uhlenberg (Geiken 2009).

The contents we used were balls of different sizes, film canisters, cotton balls, and lids from various jars and bottles. The containers were made-for-food-storage plastic tubs, recyclable oatmeal/coffee canisters and cans, plastic netting from fruit, plastic cups, and sections of drainage tubes. I chose these objects because they were easy to access and could fit together in more than one way. Our purpose was to observe the children to understand more about what interests them and their approach to new materials.

Child struggles to separate two containers.In both classrooms there was a variety of approaches: some children collected as many of the “contents” as they were able to, many explored the way the contents fit into the various containers and how the containers could open and close, some tried making a system to move the contents into and between the containers, and others used the objects to make sounds or as part of imaginative play. They encountered problems to struggle with and sometimes solve: there wasn’t enough room in the container for all the collected contents, an object got stuck inside a container, two containers got stuck together, and there weren’t enough of the coveted objects to satisfy all who wanted them.

Children use container and balls as pretend muffins.

Children began putting the containers together to make systems.

We could see which children needed support to persist, and were able to use open-ended prompts (statements from teachers) to support children in trying alternative solutions. Over the weeks of using the materials the children began using them with other classroom materials, finding new purposes for both contents and containers, and new problems to solve. Beginning with a set of materials that could be used in many ways allowed us to really see what developed, because we didn’t have an expectation of how the children should use them. The play that sprang forth reminded me of the play that happens in workshops by Dr. Walter Drew (see video examples) and his work with co-authors Dr. Marcia Nell and Dr. Baji Rankin.

Using 2-D shapes to represent 3-D structures

When we do ask children to use materials in a particular way, their different prior experiences, different developmental ages, and different interests also become apparent. We can use this information to guide our lesson planning and discussions about children’s work.

A teacher shared her previous experience of making the 3-D unit block shape cross-sections in the medium of 2-D art foam with magnetic backing to be used on a radiator or white board. We made a set based on the blocks available in the classrooms and asked children to build with a small set of blocks and then represent their structure using the 2-D art foam blocks. We hope that children will later use the foam blocks to represent the 3-D structures they want to save and reflect on after the 3-D blocks are put away.

This was a new material for most of the children so we expected them to be mostly interested in using the art foam block shapes. A few children in both age groups created small wooden unit block shapes and then used the 2-D art foam shapes to represent the structure.

A 5-block structure.

Child using 2-D art foam shapes to represent a 5-block structure.They looked back and forth between their unit block structure and their art foam block representation on the wall. A child who was trying to make a symmetrical structure with a triangle block on either side of a central rectangular block was frustrated by the lack of triangle blocks that faced both ways. It quickly became apparent that I had only made “right-handed” triangle blocks, sticking the magnetic backing to the triangles when they were all facing the same way! Luckily I had additional material and could correct this omission. But the situation allowed us to assess that the child was very aware of the direction of her triangle block.

Child puts a long line of 2-D foam block shapes together into a "train."Some children began building a long “train” of the 2-D art foam blocks and others wanted to see how many of the art foam blocks it took to cover a set of unit blocks lying on the floor. The idea of representing a 3-D block structure may become important another day if they want to save a particular structure to use the following day but space requirements don’t allow structures to stay up during nap time. A 2-D representation can help children remember what blocks they used so they can recreate the structure and perhaps redesign it. 

 

It will be interesting to see if using the 2-D foam block shapes has any influence on whether children choose to draw their 3-D wooden block structures on paper, and how easy it is for them to document and represent their structures in yet another medium.


Geiken, R., Uhlenberg, J., Uhlenberg, D, & York, C. (November 2009). Toddlers engaged in inquiry and problem solving: Promoting learning in science and math with spheres and cylinders. National Association for the Education of Young Children National Conference, Washington, DC Conference session

Drew, Walter F. and Baji Rankin. 2004. Promoting Creativity for Life Using Open-Ended Materials. Young Children July 2004

Nell, Marcia L., and Walter F. Drew, With Deborah E. Bush. 2013. From Play to Practice: Connecting Teachers’ Play to Children’s Learning. NAEYC 

Posted in Early Years | Tagged , , , , , , , , , , , , , | Leave a comment

Wooden unit blocks and representing their use in early childhood education

Working with and reading about the work of other educators is inspiring. While observing or mentoring in different programs I am given an education and opportunity to reflect on my own practice.

The teachers in the Clarendon Child Care Center had been closely observing children’s block play and discussing it. The director introduced the Thinking Lens tool from Margie Carter and Deb Curtis’s The Visionary Director: A Handbook for Dreaming, Organizing, and Improvising in Your Center (Redleaf, 2009), and shared resources on fostering reflection and analysis. (See additional resources in TYC, and a single page resource from the ChildCareExchange.) The staff had also been reading about the use of blocks in The Block Book edited by Elisabeth S. Hirsch (NAEYC 1996) and about the early invention of wooden unit blocks and work on children’s play by Caroline Pratt. 

(You can learn more about Pratt’s work in the article, “Learning From Caroline Pratt” by Petra Munro of Hendry Louisiana State University, discussing Caroline Pratt’s life and work through a review of Mary Hauser’s Learning from Children: The Life and Legacy of Caroline Pratt in the Journal of the American Association for the Advancement of Curriculum, Volume 4 February 2008.)

A "web" of block play's role in early childhood education.

 

The staff synthesized their discussion and created a poster, based on the example by Charlotte Brody in The Block Book, to share with families: filling in their goals for using blocks and what children get out of block play, guided by the understanding they gained from reading Hirsch’s and Pratt’s work. Their work displayed in the poster was a powerful reminder to me to take children’s block play seriously while maintaining the joyful experience.

Some of my “visits” to other programs are through the shared internet. Mr. Peter of Mr. Noah’s Nursery School writes about his class’ experience of block play in “The Bliss of Blocks” on the blog, Gopher Ark – the art of early education.

What are your “ah ha!” moments of observing and fostering block play in your early childhood program?

Posted in Early Years | Tagged , , , , , , , , , , | Leave a comment

Once Upon an Earth Science Book

Do your middle school or high school students have trouble comprehending scientific reading? If you answered yes, we’ve got just the book for you! Here’s another question: Are you ready to have some fun in your classroom? Yes, again? Well, Once Upon an Earth Science Book is hot off the press. This new book by Jodi Wheeler-Toppen includes 12 interdisciplinary activities designed to create confident readers.

Once Upon an Earth Science BookOnce Upon an Earth Science Book is designed for middle and high school Earth science teachers and supports the Next Generation Science Standards and the reading and writing portions of the Common Core State Standards.

Each lesson includes a specific reading comprehension strategy that teachers can introduce. Then, working in groups, students can read a passage, fill in gaps in prior knowledge, and model reading strategies for one another. Next, students engage with sense-making activities like writing prompts, journal entries and other assignments. The book includes ideas for assessments as well.

Reading topics include glaciers, ocean garbage patches, hurricanes, the solar system, seasons, energy, geological dating, mountains, plate tectonics, and more.

One exercise has students reading an article called “On the Tracks of a Dinosaur” and pairing it with a hands-on activity. Students will be told that they have been called in to interpret a new dinosaur trackway that has been found along a local river. Using reading exercises, observations, measurements, and discussions, students will formulate a hypothesis about what could make the stride length increase along the trackway. This lesson includes several activities designed to get students reading, thinking, and using their imagination.

The book has everything needed to build a well-thought out lesson that will interest, entertain, and teach students.

Check out the sample chapter “Continents on the Move.” In this chapter, students will learn about Alfred Wegener’s supporting evidence for the concept of continental drift.

This book is also available as an e-book.

Follow NSTA

Facebook icon Twitter icon LinkedIn icon Pinterest icon G+ icon YouTube icon Instagram icon
Posted in NSTA Press Books | Tagged , , , , | Leave a comment

Focus on Physics: The Equilibrium Rule—A Personal Discovery

Building an Understanding of Physical Principles

Fig1

Figure 1. Burl and Paul on a scaffold.

Before college, I worked with master sign painter Burl Grey, who, like me, was passionate about science but didn’t study physics in high school. One day Burl asked which of the two ropes holding up our sign-painting scaffold (Figure 1) experienced more of the “stretching force” called tension. Burl twanged the rope near his end of the scaffold—like a guitar string—and I did the same with mine. Burl, who was heavier than me, reasoned that his rope should have more tension because it supported more weight. Hearing his rope twang at a higher pitch than mine reasonably confirmed that his rope experienced more tension.

Fig2

Figure 2. Paul in middle of scaffold.

Would it affect the tensions, we wondered, if I walked to the middle of the scaffold, toward Burl (Figure 2)? Burl’s rope would support more weight and have greater tension, we reasoned, and tension in my rope should decrease accordingly. To exaggerate the point, if we both stood together at one extreme end of the scaffold and leaned outward, the opposite end of the scaffold should rise like a seesaw, its rope going limp with no tension at all (Figure 3).

Figure 3. Burl and Paul at left end, with the right end raised and the rope limp.

Figure 3. Burl and Paul at left end, with the right end raised and the rope limp.

We agreed that my rope’s tension would decrease as I walked toward Burl—but would the decrease be compensated—exactly—by increased tension in Burl’s rope? If so, how would one rope “know” about changes in the other rope? The answer was beyond our understanding. I learned it only after leaving my sign-painting career for prep school, college, and graduate studies that immersed me in the world of physics. Continue reading …

Posted in The Science Teacher | Tagged , , | Leave a comment

Ideas and information from NSTA’s Summer K-12 journals

These issues are great additions to your summer reading list! Most of the lessons in these journals include a detailed chart connecting the lesson to the NGSS.

Science and Children – From Molecules to Organisms

The featured articles focus on developing a progression of learning for younger students.

  • Native Plants and Seeds, Oh My! – Using a plant found in the school garden (milkweed), this lesson includes several parts on the basics of plants and investigations with native plants. Photographs show students at work.
  • Who Is Your Champion? – With a focus on designs and models, students consider the question “What can we learn from plants and animals to help solve the problems we face in our lives?”
  • Stalk It Up to Integrated Learning – Plant parts as food is the basis for this set of learning activities.
  • Elementary Anatomy – Young students enjoy learning about themselves. This lesson for preschool students helps students learn about body parts they can’t see.

Continue reading …

Posted in SciLinks | Leave a comment

Soaring in a Digital Ecosystem

This column regularly describes digital tools to help teachers make learning more personal and effective for all students. When these tools converge, they create a sort of digital ecosystem designed to make students more collaborative and innovative, skills essential for success in today’s world. But are your students truly using digital technology to its maximum benefit?

The SAMR model
Our efforts toward digital convergence are based on the Substitution SAMR-box2Augmentation Modification Redefinition (SAMR) model (http://bit.ly/1mFgc1l) (see box), which leads to higher-order technology in the classroom. Used at a low level, technology merely serves as a substitution—for example, using a word processor instead of paper and pencil to write a conclusion.

The next level is augmentation, in which technology improves on a learning task similar to what students could do without the technology, such as using the formatting tools in a word processor to highlight areas of interest. Much of classroom technology falls into these two categories, including scientific probes and graphing calculators (www.desmos.com). Our goal is to move on to the next levels of technology use: modification and redefinition of student work to demonstrate understanding.

Continue reading …

Posted in Science 2.0, The Science Teacher | Leave a comment

Place-Based Learning in Middle School: Putting Scientific Principles to Work in your Community

blog head

“When we try to pick out anything by itself, we find it hitched to everything else in the Universe.” -John Muir, My First Summer in the Sierra, 1911.

We hope that you are enjoying your summer!  As teachers, we realize that your mind is never far from your classroom, even if your body is lounging on a chair next to *insert appropriate body of water here*. As science teachers, especially, even the sounds of waves and splashing children have entirely different meaning to us than to those in other walks of life.  You might hear water hitting the beach and start pondering frequency, wavelength, and longshore drift and before you know it your mind starts generating lesson plans.  Teachers are constantly mining personal experiences for ideas to help students connect what they learn to the world around them.

Making these connections is infinitely easier for our students if we are able to take them beyond the confines of the schoolroom. While the majority of us would hesitate to invite our students on summer vacation with us, we work hard to provide real-world, authentic learning opportunities for them. When students embark on a nature walk around the school grounds, enjoy a guest speaker from the local community, experience a well-planned outdoor education trip, or gather data for citizen-scientist programs science concepts come alive in a way that even the best textbooks can never match.

Continue reading …

Posted in NSTA Membership | Tagged , | 2 Responses

Changing grade levels

5229139935_f4b54c053c_mNext year there will be an opening in the high school science department. Although I love teaching middle school, I’m tempted by the opportunity to try something different and use more of what I majored in (chemistry). What advantages and disadvantages should I consider?—C., New Jersey

Taking on new subjects or grade levels can be exciting and professionally rejuvenating. It can also be a lot of work, almost like starting over.

Continue reading …

Posted in Ms. Mentor | Tagged | Leave a comment

NSTA Legislative Update: Update on ESSA; Good News for STEM and FY2017 Appropriations

 

LegislativeUpdateChangeTheTextEachTimeAndTheDateV3 Jul15v2

July 14, 2016: Congress is set to adjourn for the summer and will return after Labor Day. Before leaving town though there was a flurry of activity around appropriations for FY2017 programs and career and technical education. And the political drama continues as Education Secretary King answers questions from key Congressional Republicans over implementation of the Every Student Succeeds Act.

The good news for STEM: The House of Representatives Appropriations Committee has approved a FY2017 Labor HHS and Education spending bill that includes $1 billion for the new Every Student Succeeds Act Title IV block grants.  This amount is $500 million above the President’s budget request and $700 million above the Senate funding ($300m).  The program is authorized at $1.65 billion in ESSA.

Continue reading …

Posted in Legislative Update | Tagged , , , , | Leave a comment

3D Brings Science to Life

Middle school children are inquisitive and enjoy classroom opportunities to learn visually. Subsequently, an option worth consideration is an application of technology known as 3D. It’s similar to the 3D technology that is used in movie theaters and is designed to enhance visualization of pairs of images and gives users a greater sense of depth perception.

For nearly 150 years, stereoscopes have been used for looking at images that depict left-eye and right-eye views of the same object; culminating into a single three-dimensional image.  Subsequently, when viewing the image with special projection hardware and eyewear, a typical stereoscope provides each eye with a lens that makes the image seen through it appear larger and more distant, resulting in the illusion of depth.

3D

Recent Advances in technology have led to much more sophisticated ways of projecting the third dimension.  For example, Data Light Processing (DLP) technology creates a stunning picture and is used in contemporary projectors. DLP technology is extremely fast, and projects two images on the screen at the same time, i.e., one for each eye. As a tool for conceiving the image, 3D glasses are used to combine the two images into 3D and can be purchased from a variety of projector manufacturers, e.g., InFocus, Texas Instruments, etc. Continue reading …

Posted in NSTA Recommends: Technology | Leave a comment